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Reply? by A. Vishen, G. S. Singh, and F. E. Gardiol’

We would like to thank Dr. Fikioris, Dr. Roumeliotis, and Dr.
Davidovitz for their interest and comments on our paper. We
welcome this opportunity to clarify some aspects and hope in this
way to clear up some confusion.

The cutoff wavenumbers, which are characterized by B8 =0,
have been considered in our paper [1], as is indicated by its title.
This implies that in this work k =k , so that the error which
Fikioris and Roumeliotis claim to have located just does not
exist.

It seems that the basic spirit behind the approach discussed in
[2] and used in our paper has been overlooked, resulting in
comments on our statement “a rigorous mathematical derivation”.
The use of the addition theorems for the Bessel functions in the
context of a solution to the Helmholtz equation is certainly not
new; the same had been used some 40 years ago while studying
eccentric control-rod problems in thermal nuclear reactors [3].
The Fourier expansions which we have made use of do provide a
more general technique for solving problems with complicated
boundaries. In fact, Nagaya and coworkers [4, and references
therein] have already applied this approach in studying the
vibration of membranes and plates of various geometries. How-
ever, for the geometry under discussion, our approach leads to
the infinite set of linear equations identical with those given in [5]
and [6].

One finds from the tables in [5] that symmetric and antisym-
metric modes of a given higher order have the same value of g,
up to the eighth decimal place. This gives a degeneracy which is
simply an artifact of an approximate but algebraically tedious
approach. The authors of [5] have not developed a form which
would support their claim for the onset of bifurcation by inclu-
sion of the fourth-order terms. On the other hand, they state that
“the agreement for k,.d <1 (sometimes even k.d >1) is remark-
able.” In contrast, we find that when g,,, = —6 [5, tables II and
I11], the cutoff wavenumber goes to zero for k.d = 0.4 and even
becomes negative for k d > 0.4. This is clearly meaningless,
referred to in [1] as “nonphysical.”

One may be able to circumvent the bizarre situation if one
considers the work in [5] to have a mode-dependent range of
validity. But then this work loses its significance. One may even
question the wisdom of using an approximate method whose
validity for each mode requires that it be checked by comparison
with experimental or exact theoretical work like ours. Of course,
the numerical resolution in our work requires repetitive calcula-
tions. But this is hardly relevant nowadays when ample computer
power is available. Furthermore, one does not have to worry over
the validity of results for any particular value of k_d.

It was noted in [1] that some of the cutoff values obtained lie
outside (but near) the bounds reported by Kuttler [7]. Also, some
of the values obtained by the approximate methods could not (as
yet) be obtained with the rigorous approach. These two kinds of
discrepancies are still unresolved; the comments by Fikioris and
Roumeliotis do not provide any new insight on these issues.
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Comments on “Millimetric Nonreciprocal
Coupled-Slot Finline Components”

E. JENSEN anb C. SCHIEBLICH

Abstract — A statement is made concerning the feasibility of nonrecipro-
cal components with ferrites magnetized in the direction of propagation.

In the paper in question,' an isolator is presented operating
with a ferrite magnetized in the direction of propagation inside
waveguide with constant cross section.

Since only reciprocal devices with these properties have be-
come known until now (Reggia—Spencer phase shifter), some
general remarks should be made concerning the features of
devices with gyrotropic media.

Let us consider an arbitrary waveguide section W (Fig. 1)
between the planes 4, and A4,, which are in the xy plane of a
Cartesian coordinate system. The waveguide is completely or
partly filled with gyromagnetic material with the permeability
tensor

poo—je 0
E=po| jr [ 0 (1)
0 0 1

ie., the magnetic bias field is applied in + z direction. At A4, we
assume an arbitrary transversal field distribution El(x ),
Hl(x y). This yields a field distribution Ez(x ») Hz(x y) at
4;.

Inserting a magnetic wall M in the xy plane and applying
image theory yields the waveguide section W’ with the field
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Fig. 1. Waveguide section.

distributions E!, H! and Ej, H; at the planes 4] and 4,
respectively. The following relations hold for the transversal field

components: .

E/(x,)=E(x,y)

fiz,(xsy)='“1;1(x’J’) (2

where i=1,2. Field components polarized circularly in the xy
plane keep their sense of rotation, so that the permeability tensor
(1) remains unchanged; hence, the bias field is still in +z
direction. .

Integrating the Poynting vector E X H across the boundary

planes reveals that the power flow through 4, in the + z direc-
tion equals that through A in the — z direction, and the same
holds for the planes 4, and 4j.
_ If the waveguide section W exhibits reflection symmetry with
respect to the midplane between A, and 4,, W and W’ differ
only in the direction of bias field related to the direction of
propagation. In both cases, the ratio of outgoing to incident
power is the same; i.e., the device is reciprocal.

This statement is still valid for devices with more than two
ports, provided that all reference planes are in the xy plane. Bias
fields parallel to the reflection plane, ie., transverse to the
direction of propagation, must be reversed in the mapping proce-
dure because field components polarized circularly in a plane
orthogonal to the reflection plane change their sense. In this case,
the above considerations result in the generalized reciprocity
theorem that simultaneous exchange of ports and bias ficld
direction does not alter the transmission properties [1].

The devices presented by Davis and Sillars were biased by a
bar magnet alongside the ferrite region. This may give rise to
transversely biased field components. It should be pointed out
here that for devices with the above-mentioned symmetrical

properties, only the transversely biased field components render
possible nonreciprocal behavior.

Reply’? by L. E. Davis and D. B. Sillars’

We would like to thank the above authors for their interest in
our paper and for the questions related to the isolators described
therein. They made two principal points: (a) that the ferrite is
magpnetized in the direction of wave propagation and the compo-
nent should be reciprocal in accordance with the generalized
reciprocity theorem and (b) that the steady magnetic bias field
was applied with permanent magnets alongside the ferrite region
and these may have caused stray transverse static field compo-
nents which could have caused the nonreciprocal behavior.

Taking the second point first, the permanent magnets could
cause small transverse static field components in the ferrite, but
we believe these would have a negligible effect. Experiments with
a transverse bias field early in the investigation showed that it did
not cause any significant nonreciprocity in this coupled-mode
structure at 26-40 GHz with the magnitudes of field available to
us. Also, it may be noted that the values of bias field used in
these axially biased components are very much smaller than have
been used in transversely biased field-displacement or resonance
components and therefore stray transverse fields would not be
expected to cause appreciable nonreciprocity. To minimize trans-
verse-field effects, some experiments were performed with the
structure aligned coaxially at the center of a solenoid and it was
found that a differential insertion loss of the order of 12 dB could
readily be obtained.

Regarding the first point, it is the inhomogeneity and asymme-
try of the structure that cause the nonreciprocal behavior of the
odd mode.

The ferrite is placed only on one side of the finline double-slot
septum, and with a fixed direction of propagation the nonre-
ciprocity can be demonstrated either by reversing the applied
field H, or by placing the ferrite slab on the other side of the
septum. The nonreciprocity takes the form of an RF field dis-
placement away from one slot towards the other when the
“quasi-odd mode” is launched in the coupled slots. (In the
absence of H,, the odd normal mode is defined in Fig. 2(b) of
our paper.) Using this behavior, isolators were realized with
structures that do not have magnetic-wall reflection symmetry.
For example, the isolator shown in Fig. 6 of our paper does not
look the same at port 1 and port 2. Looking in from the left, the
ferrite is on the right of the septum and H,, is antiparallel to the
direction of propagation; looking in from the right, H, is again
antiparallel but the ferrite is on the left. With the isolator shown
in Fig. 8 of our paper, looking from the left, ferrite (1) is on the
right and H; is antiparallel. Looking from the right, ferrite (2) is
again on the right but H, is parallel with the direction of
propagation.

Therefore, these axially magnetized isolators do not violate the
generalized reciprocity theorem.
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