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We would like to thank Dr. Fikioris, Dr. Roumefiotis, and Dr.

Davidovitz for their interest and comments on our paper. We

welcome this opportunity to clarify some aspects and hope in this

way to clear up some confusion.

The cutoff wavenumbers, which are characterized by ~ = O,

have been considered in our paper [1], as is indicated by its title.

This implies that in this work k = k,, so that the error which

Fikioris and Roumefiotis claim to have located just does not

exist.

It seems that the basic spirit behind the approach discussed in

[2] and used in our paper has been overlooked, resulting in

comments on our statement” a rigorous mathematical derivation”.

The use of the addition theorems for the Bessel functions in the

context of a solution to the Helmholtz equation is certainly not

new; the same had been used some 40 years ago while studying

eccentric control-rod problems in thermal nuclear reactors [3].

The Fourier expansions which we have made use of do provide a

more general technique for solving problems with complicated

boundaries. In fact, Nagaya and coworkers [4, and references

therein] have already applied this approach in studying the

vibration of membranes and plates of various geometries. How-

ever, for the geometry under discussion, our approach leads to

the infinite set of linear equations identical with those given in [5]

and [6].

One finds from the tables in [5] that symmetric and antisym-

metric modes of a given higher order have the same value of g. ~

up to the eighth decimal place. This gives a degeneracy which is

simply an artifact of an approximate but algebraically tedious

approach. The authors of [5] have not developed a form which

would support their claim for the onset of bifurcation by inclu-

sion of the fourth-order terms. On the other hand, they state that

“the agreement for kCd <1 (sometimes even kCd > 1) is remark-

able.” In contrast, we find that when gH~ = – 6 [5, tables II and

III], the cutoff wavenumber goes to zero for kCd = 0.4 and even

becomes negative for k, d >0.4. This is clearly meaningless,

referred to in [1] as “nonphysical.”

One may be able to circumvent the bizarre situation if one

considers the work in [5] to have a mode-dependent range of

validity. But then this work loses its significance. One may even

question the wisdom of using an approximate method whose

validity for each mode requires that it be checked by comparison

with experimental or exact theoretical work like ours. Of course,

the numericaf resolution in our work requires repetitive calcula-

tions. But this is hardly relevant nowadays when ample computer

power is available. Furthermore, one does not have to worry over

the validity of results for any particular value of kcd.

It was noted in [1] that some of the cutoff values obtained lie

outside (but near) the bounds reported by Kuttler [7]. Also, some

of the values obtained by the approximate methods could not (as

yet) be obtained with the rigorous approach. These two kinds of

discrepancies are still unresolved; the comments by Fikioris and

Roumeliotis do not provide any new insight on these issues.
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Comments on “Millimetric Nonreciprocal

Coupled-Slot Finline Components”

E. JENSEN AND C. SCHIEBLICH

Abstract —A statement is made concerning the feasibility of nonrecipro-

cal components with ferntes magnetized in the dkection of propagation.

In the paper in question} an isolator is presented operating

with a ferrite magnetized in the direction of propagation inside

waveguide with constant cross section.

Since only reciprocal devices with these properties have be-

come known until now (Reggia– Spencer phase shifter), some

general remarks should be made concerning the features of

devices with gyrotropic media.

Let us consider an arbitrary waveguide section W (Fig. 1)

between the planes Al and A2, which are in the xy plane of a

Cartesian coordinate system. The waveguide is completely or

partly filled with gyromagnetic material with the permeability

tensor

MP –j~ O

F=p(l jK p o (1)
001

i.e., the magnetic bias field is applied in + z direction. At Al, we

a~sume an arbitrary transversal field di~tribution+ El ( x, y),

HI ( x, y ). This yields a field distribution E2 ( x, y), Hz ( x, y ) at

AZ.

Inserting a magnetic wall M in the xy plane and applying

image theory yields the waveguide section W’ with the field
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Fig. 1. Waveguide section.

distributions ~{, ~{ and ~., @ at the planes A; and A;,

respectively. The following relations hold for the transversal field

components: 3

E’(X>Y)=-E(X,Y)

fi; (x, j’)= -i, (x, y) (2)

where i =1,2. Field components polarized circularly in the xy

plane keep their sense of rotation, so that the permeability tensor

(1) remains unchanged; hence, the bias field is still in + z

direction.

Integrating the Poynting vector -i?X F across the boundary

planes reveals that the power flow through Al in the + z direc-

tion equals that through A; in the – z direction, and the same

holds for the planes AZ and A;.

If the waveguide section w exhibits reflection symmetry with

respect to the midplane between Al and A ~, ?$’ and” W’ differ

only in the direction of bias field related to the direction of

propagation. In both cases, the ratio of outgoing to incident

power is the same; i.e., the device is reciprocal.

This statement is still valid for devices with more than two

ports, provided that all reference planes are in the xy plane. Bias

fields parallel to the reflection plane, i.e., transverse to the

direction of propagation, must be reversed in the mapping proce-

dure because field components polarized circularly in a plane

orthogonal to the reflection plane change their sense. In this case,

the above considerations result in the generalized reciprocity

theorem that simultaneous exchange of ports and bias field

direction does not alter the transmission properties [1].

The devices presented by Davis and Sillars were biased by a

bar magnet alongside the ferrite region. This may give rise to

transversely biased field components. It should be pointed out

here that for devices with the above-mentioned symmetrical

properties, only the transversely biased field components render

possible nonreciprocal behavior.

Reply2 by L. E. Davis and D. B. Sillars3

We would like to thank the above authors for their interest in

our paper and for the questions related to the isolators described

therein. They made two principal points: (a) that the ferrite is

magnetized in the direction of wave propagation and the compo-

nent should be reciprocal in accordance with the generalized

reciprocity theorem and (b) that the steady magnetic bias field

was applied with permanent magnets alongside the ferrite region

and these may have caused stray transverse static field compo-

nents which could have caused the nonreciprocal behavior.

Taking the second point first, the permanent magnets could

cause small transverse static field components in the ferrite, but

we believe these would have a negligible effect. Experiments with

a transverse bias field early in the investigation showed that it did

not cause any significant nonreciprocity in this coupled-mode

structure at 26–40 GHz with the magnitudes of field available to

us. Also, it may be noted that the values of bias field used in

these axially biased components are very much smaller than have

been used in transversely biased field-displacement or resonance

components and therefore stray transverse fields would not be

expected to cause appreciable nonreciprocity. To minimize trans-

verse-field effects, some experiments were performed with the

structure aligned coaxially at the center of a solenoid and it was

found that a differential insertion loss of the order of 12 dB could

readily be obtained.

Regarding the first point, it is the inhomogeneity and asymme-

try of the structure that cause the nonreciprocal behavior of the

odd mode.

The ferrite is placed only on one side of the finline double-slot

septum, and with a fixed direction of propagation the nonre-

ciprocity can be demonstrated either by reversing the applied

field HO or by placing the ferrite slab on the other side of the

septum. The nonreciprocity takes the form of an RF field dis-

placement away from one slot towards the other when the

“quasi-odd mode” is launched in the coupled slots. (In the

absence of HO, the odd normal mode is defined in Fig. 2(b) of

our paper.) Using this behavior, isolators were realized with

structures that do not have magnetic-wall reflection symmetry.

For example, the isolator shown in Fig. 6 of our paper does not

look the same at port 1 and port 2. Looking in from the left, the

ferrite is on the right of the septum and HO is antiparallel to the

direction of propagation; looking in from the right, HO is again

antiparrdlel but the ferrite is on the left. With the isolator shown

in Fig. 8 of our paper, looking from the left, ferrite (1) is on the

right and HO is antiparrdlel. Looking from the right, ferrite (2) is

again on the right but HO is parallel with the direction of

propagation.

Therefore, these axially magnetized isolators do not violate the

generalized reciprocity theorem.
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